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1. INTRODUCTION 

1 The probabilistic methods can be approached from either a Bayesian or a frequentist perspective, with possible 
impact of the choice on the outcomes. However, Newman and Noy (2023) do not distinguish between the two 
perspectives, citing the limited availability of Bayesian attribution studies. 

2 Some of the examples include Frame et al. (2020a) and Smiley et al. (2022), who estimated the economic cost 
of 2017 Hurricane Harvey using probability-based and intensity-based approaches, respectively. Similarly, Imada 
et al. (2020) use a probability-based approach to show that human-induced warming increased the probability of 
regional heavy rainfall events in 2017 and 2018 over western Japan.

This supplementary annex accompanies the technical report Bearing the burden: Climate 
change-attributable losses and damages in the Sahel and Greater Horn of Africa (2024). It is 
intended to be read apart from that report, to gain a more profound understanding of the data 
and concepts presented there. This supplement is a detailed review and assessment of climate 
change-attributable losses and damages in the agriculture and livestock sectors in the Sahel 
and Greater Horn of Africa (SGHA).

2. DATA AND METHODOLOGY

2.1 Extreme event attribution analysis

This study uses information from extreme event attribution (EEA) studies that compare the 
probability of an event that occurred to the probability of the same event occurring in a world 
without anthropogenic climate change. Probabilistic EEA was first conceptualised by Allen 
(2003) and later implemented by Stott et al. (2004) to estimate the climate change-attributable 
impact of the 2003 continental European heatwave that cause high mortality across the 
region. 

Studies using EEA may take a ‘probability-based’ or ‘intensity-based’ approach to attribution 
or hybrid approaches (van Oldenbourgh et al., 2021; Otto, 2017; Stott et al., 2016). The 
method draws on ensembles of climate models, historical observation data and extreme 
statistics analysis. In a probability-based EEA, only the differences in relative likelihood of 
event occurrence in a non-climate change versus climate change world are explored. In this 
approach, the fraction of attributable risk (FAR) is used to describe how much of an event's 
probability of occurrence is attributable to climate change.1 In an intensity-based approach, the 
share of the intensity of an extreme event attributable to climate change is calculated (e.g. how 
much heavier a rainfall event was due to climate change).2 Hybrid approaches use extreme 
event statistics analysis to determine trends in an event type’s (e.g. heatwave) intensity 
and its return period (how probable an event of a particular intensity occurs). Under hybrid 
approaches, ensembles – multiple climate model runs – are then used to simulate how likely 
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it is that a climate extreme of a particular intensity would occur in a hypothetical world without 
climate change, and in the current world with climate change. The combination of the extreme 
event statistics of historical observation data and from the ensembles of models is then used 
to produce estimates about the influence of climate change on the intensity and probability of 
a particular event or group of events (van Oldenbourgh et al., 2017).

Robust EEA requires sufficiently long (ideally since at least the 1950s or earlier) observation 
records with minimal gaps. ‘Confidence in attribution is higher for extreme event types where 
there are long-term historical records of observations without significant gaps, climate models 
are able to adequately simulate the extreme event and the event is purely meteorological’ (NAS, 
2016: 5-6). Events that are purely meteorological are heatwaves, cold snaps or heavy rainfall 
events. Secondary extreme weather events such as flooding, droughts or wildfires are more 
difficult to detect a climate change signal in, as these extremes are also dependent on human-
built infrastructure and land-use change. For example, non-extreme amounts of rainfall may 
trigger flooding in urban areas with a large part of their area covered by roads and buildings; 
the impervious surfaces do not allow the rain to infiltrate the soil, which leads to flooding. 

As with Newman and Noy (2023) and Panwar et al. (2023), the FAR value is calculated using 
the following formula:

 P0
FAR = 1 – 

 P1

 P0 = Probability of a climate extreme occuring without climate change
P1 = Probability of a climate extreme occuring with climate change

Based on the above formula, the FAR value will lie between 0 and 1 in cases where risk of a 
climate event is increased due to anthropogenic greenhouse gas emissions (P1 > P0). Thus, an 
FAR value of 0 means that climate change had no influence on the probability of occurrence of 
that event, and an FAR value of 1 means that the event would not have been possible without 
anthropogenic climate change (Jézéquel et al., 2018; Newman and Noy, 2023). Conversely, 
the FAR value will be negative when the likelihood of an event decreases because of climate 
change (i.e. P1 < P0 ).

3 

Frame et al. (2020b) suggested that FAR values can be used to estimate climate change-
attributable economic costs when both types of data are available. Newman and Noy (2023) 
extended this approach and extrapolated the FARs for individual events to national, regional 
and global scales and matched those with socioeconomic costs of extreme events to estimate 
climate change-attributable loss and damage. Given the paucity of attribution studies in 
low-income countries (including in the SGHA region), Newman and Noy (2023) based the 
extrapolation of FARs for individual climate extreme event types and regions on explicit 
assumptions of aggregation and generalisability (discussed in Section 2.2).

It should be noted that there are other methods of estimating the global cost of climate 
change, typically known as the integrated assessment models (IAMs). These IAMs such as 
the Dynamic Integrated model of Climate and the Economy (DICE) (Nordhaus, 2017) and the 

3 There are very few events in the Panwar et al. (2023) dataset used for this study with a negative value of FAR, 
except for cold temperature events where almost all extreme events have a negative FAR value.

http://www.sparc-knowledge.org
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Climate Framework for Uncertainty, Negotiation and Distribution (FUND) (Anthoff and Tol, 
2011) are most widely used and equally criticised. Typically, macroeconomic modelling is 
embedded in these IAMs to estimate the economic cost of climate change, expressed as a 
function of global or regional mean temperature (Diaz and Moore, 2017; Newman and Noy, 
2023). These models therefore tend to introduce additional ad hoc modification to include cost 
of extreme climate events in their assessments (Bouwer, 2011; van den Bergh, 2009; Nordhaus, 
2017). While the current EEA-based analysis may not be directly comparable to the IAMs, it still 
produces a new form of evidence that suggests a substantial underestimation of the current 
economic cost of climate change (Newman and Noy, 2023).4

4 See Newman and Noy (2023) for a comparison of EEA estimates with DICE and FUND estimates of climate-
attributable economic cost of extreme weather events. 

5 The FARs in the Newman and Noy (2023) dataset were extracted from the attribution studies conducted globally 
and listed in the Carbon Brief attribution database (Attribution – CarbonBrief 2024).

6 Newman and Noy (2023) use Scimago Journal Rank (SJR) to determine research ‘quality’, giving preference to an 
FAR measurement that comes from a higher-ranked SJR publication. For non-refereed studies such as from the 
World Weather Attribution network, an average of SJR scores for all studies is used as proxy. 

2.2 Data collection and description

As with Newman and Noy (2023) and Panwar et al. (2023), this study uses two major data 
sources: the attribution studies to extract FAR estimates, and socioeconomic cost data for 
climate events from the EM-DAT database. Missing observations in the EM-DAT database 
are also complemented with additional data from post-disaster needs assessment (PDNA) 
studies. Such studies are also used to generate preliminary estimates of agriculture loss and 
damage (discussed later in this section).

Newman and Noy (2023) have compiled a global dataset of FARs from attribution studies5 for 
specific events, matched with socioeconomic cost data for the same events from the EM-DAT 
database over the period 2000—2019. This dataset was further updated by Panwar et al. (2023) 
to include attribution studies conducted until 2022 (until 25 September 2023).

Newman and Noy (2023) applied hierarchical criteria (see Figure A1-1) in selecting the 
attribution studies and then matching them with human and economic cost estimates from 
the EM-DAT database using temporal (date, month and year) and geographical (region and 
country) criteria. In cases where more than one study was available for a specific event, the 
attribution study with ‘better’ research quality6 was used. 
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FIGURE A1-1: ANALYTICAL APPROACH USED IN EXTRACTING FRACTION OF 
ATTRIBUTABLE RISK AND EXTRAPOLATING LOSS AND DAMAGE

Source: Panwar et al. (2023)

The master dataset from Panwar et al. (2023) includes 216 matched climate extreme events 
that occurred during 2000–2022. Matched events are mapped from 135 attribution studies, as 
many of the studies (e.g. regional studies) covered multiple events. As in Figure A1-2, a majority 
(81%) of the matched events are from 2013 onwards owing to the increased frequency of EEA 
studies in recent years.

FIGURE A1-2: ANNUAL DISTRIBUTION OF MATCHED ATTRIBUTION RESULTS AND NUMBER 
OF EVENTS

Source: Panwar et al. (2023) and Newman and Noy (2023)

Flood and heatwave have the largest share of attribution results (34% each), followed by 
drought (13%), storm (7%), wildfire (7%) and cold wave (5%). As in Figure A1-3, out of the 216 
matched events, 183 are associated with increased risk (FAR greater than 0), while 25 events 
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are associated with decreased risk of occurrence (FAR less than 0). For eight events, the risk 
remains unchanged (FAR = 0).7

FIGURE A1-3: DISTRIBUTION OF FRACTION OF ATTRIBUTABLE RISKS (MINIMUM, 
MAXIMUM AND MEAN) ACROSS MATCHED EVENTS BY EVENT TYPE AND CONTINENTS

Source: Panwar et al. (2023) and Newman and Noy (2023)

Based on the global average of FARs, 50% of the probability of drought occurrence is due to 
anthropogenic climate change. The average FAR for floods is low, at 23%, because floods 
have a wider range of positive and negative FAR estimates, which is linked with them being 
secondary hazards. Floods are heavily mediated by the built environment, and some floods – 
such as storm surges and coastal flooding – are not triggered by heavy rainfall. Storms have 
an average FAR estimate of 42%, while average FAR estimates for heatwaves and wildfire 
are 79% and 57%, respectively. FAR estimates for heatwaves are the most robust globally 
due to significant length of observation data and clear climate change signals; multi-model 
climate projections for heatwaves are also the most robust (greater model agreement), though 
possibly underestimated in the SGHA region due to a cold bias in the models (IPCC, 2021).

Attribution studies are not equally distributed across continents, and Africa has just 
12 attribution studies, or 9% of the related results. There are very few or no attribution results 
for many continent–event type combinations, especially for Africa and including the SGHA 
region, which has only four attribution results. Attribution results for Africa are available only 
for heatwaves, flood and drought events, with no identified attribution study for other hazard 
types. In the absence of region-specific attribution results, global averages are used to 
approximate climate change probability attribution of a hazard type.

7 Newman and Noy (2023) consider FAR value between 0 and -0.1 as ‘unchanged’ risk.
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2.3 Post-disaster needs assessment analysis to estimate agriculture 
loss and damage 

8 The data compiled from the 88 PDNA studies was used in the FAO (2023) report and shared by the FAO team for 
this analysis.

There is no global and/or regional database on agriculture loss and damage due to extreme 
weather events. This is also true for the countries in the SGHA region, where no consolidated 
dataset (at national level) on agriculture losses is available. The Food and Agriculture 
Organization (FAO) provides some estimates of ‘potential’ crop and livestock production losses 
due to disasters; however, these estimates are not publicly available other than in the overview 
presented in its flagship reports published at infrequent intervals (see FAO, 2023). 

Disaster impact estimates provided in PDNA studies cover only 'direct' loss and damages and 
exclude indirect impacts. Nevertheless, in the absence of data on agriculture loss and damage, 
the present analysis relied on the ‘economic damages’ records from the EM-DAT database and 
generated preliminary estimates of agriculture loss and damage. For this, an analysis of the 
PDNA studies conducted during 2008—2024 in the SGHA region served as a benchmark to 
calculate the share of the agriculture sector in total economic damages reported in EM-DAT. 

Globally, there are 89 PDNA studies/surveys available for 60 countries during 2008—2024, 
available online on PreventionWeb, ReliefWeb and the Global Facility for Disaster Reduction 
and Recovery (GFDRR).8 Out of the 88 PDNA studies, 30 studies are from Africa, including 
10 PDNA studies (5 droughts, 4 floods and 1 storm) from the SGHA region. 

Agriculture sector loss and damage in relation to total economic loss and damage across all 
sectors (e.g. human settlements, infrastructure, etc.) is calculated based on the analysis of PDNA 
studies from the SGHA region (see Figure A1-4). Thus, the average share of agriculture in the 
total economic loss and damage for floods and droughts is used as a basis for slicing the total 
economic damage estimates reported in the EM-DAT database (see Figure A1-5). Similarly, the 
average share of livestock and crop loss and damage in total agriculture loss and damage is 
calculated. Table A1-1 shows an example of how agriculture loss and damage is calculated.

FIGURE A1-4: AVERAGE SHARE OF AGRICULTURE LOSS AND DAMAGE IN TOTAL ECONOMIC 
LOSS AND DAMAGE ACROSS ALL SECTORS FROM POST-DISASTER NEEDS ASSESSMENT 
STUDIES CONDUCTED IN THE SAHEL AND GREATER HORN OF AFRICA REGION

Note: Analysis is based on nine PDNA studies conducted for the SGHA region during 2008–2024.

Source: Authors’ figure, using PDNA dataset provided by FAO 

http://www.sparc-knowledge.org
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FIGURE A1-5: AVERAGE SHARE OF LIVESTOCK AND CROP LOSS AND DAMAGE IN TOTAL 
AGRICULTURE LOSS AND DAMAGE, BASED ON POST-DISASTER NEEDS ASSESSMENT 
STUDIES CONDUCTED IN THE SAHEL AND GREATER HORN OF AFRICA REGION

Note: Analysis is based on nine PDNA studies conducted for the SGHA region during 2008–2024.

Source: Authors’ figure, using PDNA dataset provided by FAO

TABLE A1-1: EXAMPLE DEMONSTRATING PROCESS OF CALCULATING AGRICULTURE LOSS 
AND DAMAGE

(1) Economic 
damage as 
reported in  
EM-DAT for 
floods/droughts 

(2) Estimated agriculture 
loss and damage based 
on average share of 
agriculture in all sectors' 
losses from the PDNA 
analysis

For floods: 

(2) = (1) x 18%

For droughts: 

(2) = (1) x 69%

(3) Estimated livestock 
loss and damage based 
on average share of 
livestock loss and 
damage in all sectors' 
losses from the PDNA 
analysis

For floods: 

(3) = (2) x 12.3%

For droughts: 

(3) = (2) x 66.7%

(4) Estimated crop loss 
and damage based on 
average share of crop 
loss and damage in all 
sectors' losses from the 
PDNA analysis

For floods: 

(4) = (2) x 83%

For droughts: 

(4) = (2) x 33%

Source: Authors’ own

2.4 Calculating loss and damage 

As with Newman and Noy (2023) and Panwar et al. (2023), the climate change-attributable 
loss and damage is quantified by combining the data on FAR estimates for individual event 
types (and direct economic costs (human, economic and agriculture costs). This can be 
mathematically expressed as follows:

CC_loss & damage i  = FAR i  * socio_economic cost i

12.3%

66.7%

83%
33%

4.7%
0.3%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Floods Droughts

Average share of livestock loss and damage
Average share of crop loss and damage
Other agriculture sub-sectors



13sparc-knowledge.org

Subject to availability of attribution studies, the FARs for loss and damage calculations in the 
SGHA region are extrapolated using both regional (for droughts) and global average (for floods) 
methods. Consequently, spatial, temporal and per event (disaster type) loss and damage are 
estimated for the SGHA region.

Newman and Noy (2023) use value of statistical life (VSL) calculations as the basis to assess 
the economic cost of human mortality. They use a VSL of $7.0837 million per life lost, which is 
an average of VSL estimates used by governments in the United States ($11.6 million) and the 
United Kingdom (£2 million). To maintain equity and enable comparison, this study also uses 
the same VSL value for all countries in the SGHA region and all other countries regardless of 
time and place of demise. As a next step, attributable statistical loss of life (SLOL) is calculated 
by multiplying VSL estimates with total attributable deaths. Thus, the total attributable loss and 
damage is a sum of attributable SLOL and economic damages. Agriculture loss and damage 
estimates do not include SLOL, as they are only linked with economic damage estimates 
reported in the EM-DAT database.

2.4.1 Limitations of data and methodology
Panwar et al. (2023) and Newman and Noy (2023) noted a range of limitations in the data 
and methods used as part of the EEA analysis. Some of the key ones as highlighted by these 
studies, and specific limitations related to the SGHA study region, are summarised below.

 � EEA attribution methodology: EEA draws on ensembles of climate models, historical 
observation data and extreme statistics analysis. Throughout the SGHA region, historical 
observation becomes scarce after the 1980s due to instability affecting maintenance of 
weather stations and national hydromet capacities. This makes it difficult to conduct the 
statistical analysis necessary to detect a climate change signal in some events. Additionally, 
the SGHA has complex rainfall dynamics, influenced by the West and East African monsoon 
systems. The monsoons have high year-to-year and multidecadal variability and are 
influenced by multiyear to multidecadal processes such as the El Niño Southern Oscillation 
or the Atlantic Multidecadal Oscillation. Untangling a climate change signal in precipitation 
extremes (or a lack of excess) is difficult against the high natural variability; attributable 
signals in temperature extremes are easier to detect. 

 � Uneven geographical distribution of attribution studies: The climate attribution studies are 
limited in number and unequally distributed across the world. Many attribution studies are 
conducted in high-income countries (including China), and very few in low-income countries. 
Only 9% of the 135 attribution studies in this study are from Africa, while over half are from 
North America and Europe. This mismatch in study distribution has reduced variation in 
estimates and forced the FAR extrapolation for the SGHA region using regional and global 
averages. By increasing geographical coverage of attribution studies, especially in Africa, 
estimates of climate-attributable loss and damage will become more robust.

 � Limited attribution results for some hazard types: There is an uneven spread of 
attribution studies for different natural hazard types. Heatwave and flood each have 34% 
of the total attribution results, out of 135 attribution studies. In contrast, only 7% of results 
are associated with storms, despite it being one of the costliest event types worldwide. 
Similarly, only 13% of the attribution studies pertain to droughts. Newman and Noy (2023) 
note that the main reason for this discrepancy could be the difficulty of attributing storms 
(and drought) to climate change, compared with, for example, heatwaves, which have direct 

http://www.sparc-knowledge.org
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evapotranspirative effects and are rather straightforward to attribute (see also Noy et al., 
2023).9 

 � Difficulty in matching attribution with socioeconomic data: Unclear spatial and temporal 
boundaries of the events being analysed can make it difficult to match FAR estimates with 
socioeconomic cost data. For example, there were a few attribution results where the ‘start’ 
and ‘end’ date of an event was not clearly defined, making it difficult to confidently match 
these with EM-DAT data records. 

 � Gaps in the socioeconomic data: The socioeconomic cost data used in this study has 
several limitations, such as missing observations and validity, geographical coverage and 
granularity (see Panwar and Sen, 2020). A total of 7,403 events were recorded in the EM-DAT 
database between 2000 and 2022, out of which 5,812 events had human and/or  
economic cost data recorded. For the 18 countries of the SGHA region, out of 527 total 
events (88 droughts, 399 floods, 31 storms, 3 wildfires and 2 heatwaves), 493 had the 
number of human deaths and/or people affected recorded, while economic cost figures 
were recorded for only 60 events. Because of its event inclusion criteria, EM-DAT only covers 
‘intensive’ events and leaves out numerous ‘extensive’ events (low effect but frequently 
recurring). These may not be noteworthy individually, but cumulatively they can represent a 
large economic cost. Furthermore, EM-DAT does not include data specifically on damages 
in sectors such as agriculture. 

 � Absence of indirect costs and non-economic loss and damage: EM-DAT estimates only 
include direct costs (human fatalities, number of people affected, and economic losses) of 
disasters, but not their indirect macroeconomic and fiscal consequences or non-economic 
losses, which are usually difficult to estimate. Therefore, the ‘direct’ loss and damage 
estimates calculated for this study are only indicative, and the ‘total cost’ of climate change-
attributable loss and damage (including indirect and non-economic loss and damage) could 
be several times higher. 

9 One of the reasons for lack of attribution for many of droughts – at least the lack of rain aspect – is that the 
estimates are still within the range of natural variability because they are tied to multiyear or multidecadal 
teleconnections. Where the climate change signal is emerging in hydrological and agricultural droughts in Africa is 
due to higher temperatures increasing evaporation. The five consecutive failed rainy seasons in Somalia and other 
parts of the Horn of Africa were within the realm of natural variability (e.g. a triple-dip La Niña, while rare, is still 
within natural variability). However, the above-average temperatures worsened water loss and vegetation death as 
part of the drought.
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3. SUPPLEMENTARY FIGURES 
AND TABLES

FIGURE A2-1: AGRICULTURE, FORESTRY AND FISHING VALUE ADDED AND  
EMPLOYMENT, 2022

Note: No data was available for agriculture, forestry and fishing value added in 2022 for Eritrea, South Sudan and 
Somalia; this figure is based on World Bank national accounts data, Organisation for Economic Co-operation and 
Development (OECD) National Accounts data files, and the International Labour Organization modelled estimates 
database. 

Source: Authors’ figure, using World Bank Group (n.d.)

FIGURE A2-2: AVERAGE ANNUAL CLIMATE-ATTRIBUTABLE HUMAN LOSSES IN SAHEL AND 
GREATER HORN OF AFRICA AND OTHER (NON-SAHEL AND GREATER HORN OF AFRICA) 
COUNTRIES, 2000–2022

Note: Analysis is based on EM-DAT disaster damage records, using global average FARs. Figures are rounded. LDCs: 
least-developed countries; LICs: low-income countries; LMICs: lower-middle-income countries.

Source: Authors‘ own, based on EM-DAT (n.d.)
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FIGURE A2-3: ANNUAL DISTRIBUTION OF CLIMATE-ATTRIBUTABLE LOSS AND DAMAGE  
($ 2020 BILLIONS)

Note: Analysis is based on EM-DAT disaster damage records, using global average FARs. All figures are in 2020 US$. 
SLOL: statistical loss of life.

Source: Authors‘ own, based on EM-DAT (n.d.)

TABLE A2-1: PRELIMINARY ESTIMATES ON TOTAL AND CLIMATE-ATTRIBUTABLE 
AGRICULTURE LOSS AND DAMAGE DUE TO FLOODS AND DROUGHTS COMBINED  
2000–2022 (2020 $ MILLIONS)

Cumulative 
(2000–2022)

Livestock Crops Agriculture total

Total Attributable Total Attributable Total Attributable

Burkina Faso 5.68 1.31 38.33 8.82 46.18 10.62

Cameroon 0.41 0.09 2.76 0.63 3.32 0.76

Chad 0.28 0.06 1.90 0.44 2.29 0.53

Djibouti 110.89 55.44 54.86 27.43 166.25 83.12

Ethiopia 2,826.01 1,412.92 1,400.22 699.51 4,239.06 2,118.81

Kenya 6,018.37 3,006.05 3,050.16 1,503.94 9,099.98 4,524.52

Mali 121.77 60.88 60.24 30.12 182.56 91.28

Mauritania 0.05 0.01 0.33 0.08 0.40 0.09

Niger 58.84 13.53 397.07 91.33 478.40 110.03

Nigeria 538.61 123.88 3,634.50 835.94 4,378.92 1,007.15

Senegal 4.74 1.09 31.97 7.35 38.52 8.86

Somalia 3,783.31 1,891.34 1,883.22 938.37 5,684.24 2,838.38

Sudan 113.45 26.09 765.53 176.07 922.32 212.13

Uganda 616.87 308.40 306.09 152.78 925.79 462.58

Grand total 14,199.26 6,901.10 11,627.20 4,472.82 26,168.23 11,468.88

Note: All figures are in 2020 $ millions. Agriculture loss and damage figures are estimated from the total economic 
damage records of EM-DAT. 

Source: Authors’ own, based on EM-DAT (n.d.)
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The extrapolation of agriculture losses and damages is based on average contribution of the 
agriculture sector to the total economic loss and damages reported across the PDNA studies 
conducted between 2008 and 2024 in the SGHA region (see Chapter 2 of this Supplementary 
Annex for more details). Figures for Eritrea, the Gambia, Guinea and South Sudan could not be 
calculated due to a lack of data.

FIGURE A2-4: AVERAGE ANNUAL CLIMATE-ATTRIBUTABLE AGRICULTURE LOSS AND 
DAMAGE IN SAHEL AND GREATER HORN OF AFRICA AND OTHER (NON-SAHEL AND 
GREATER HORN OF AFRICA) COUNTRIES AS A PERCENTAGE OF TOTAL AGRICULTURE 
GDP, 2000–2022

Note: Agriculture loss and damage figures are estimated from EM-DAT total economic damage records. LDCs: least-
developed countries; LICs: low-income countries; LMICs: lower-middle-income countries

Source: Authors‘ own, based on EM-DAT (n.d.)

A recent report by the FAO (FAO, 2023) presents estimates of potential production losses due 
to natural hazard-related disasters globally between 1991 and 2021 (mostly climate-related). 
The report uses counterfactual yields for livestock and crop sub-sectors and differentiates 
those from actual yields to calculate disaster-induced yields for 186 items and 197 countries. 

The FAO report presents average total production losses (1991–2021) in the agriculture sector 
(livestock and crops) as a percentage of agriculture GDP by sub-regions in Africa – Western, 
Middle and Eastern Africa. In the absence of data disaggregated by country in the report, these 
inputs are used in the present analysis, and average annual agriculture losses (1991–2021) 
from all hazard events are estimated using the regional estimates and average agriculture 
gross domestic product (GDP) for the SGHA countries. Using event-wise contribution to 
agriculture losses from the FAO report, these average estimates are deconstructed to get 
estimates for droughts and floods. Furthermore, the average contributions of crop and 
livestock sub-sectors are calculated using event-wise average contribution based on the 
analysis of PDNA studies. Notable here is that these are only indicative estimates used to 
present the potential scale of agriculture loss and damages. As such these estimates should 
not be used as actual estimates from the FAO report.

Based on these assumptions, average annual climate-attributable agriculture loss and damage 
in the SGHA region could be as high as $2.3 billion between 1991 and 2021, amounting to 
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roughly 4–15% of the agriculture GDP across the region (Table A2-2). A disaggregated analysis 
based on the country-level data from the the FAO could reveal more insights into the climate-
attributable agriculture loss and damage.

TABLE A2-2: 'INDICATIVE' TOTAL AND CLIMATE-ATTRIBUTABLE AGRICULTURE 
(INCLUDING CROP AND LIVESTOCK) LOSS AND DAMAGE FOR THE SAHEL AND  
GREATER HORN OF AFRICA REGION (AVERAGED), 1991—2021

Indicative averages  
(1991—2021)

Livestock ($ millions) Crops ($ millions) Total agriculture

Total Attributable Total Attributable Total Attributable

Burkina Faso 12.64 8.21 15.33 10.85 27.98 19.06

Cameroon 60.93 39.57 73.90 52.31 134.83 91.88

Chad 27.57 17.90 33.43 23.67 61.00 41.57

Djibouti 0.26 0.17 0.32 0.23 0.58 0.40

Eritrea 2.20 1.43 2.67 1.89 4.87 3.32

Ethiopia 313.04 203.30 379.69 268.77 692.73 472.08

Gambia 1.85 1.20 2.24 1.58 4.08 2.78

Guinea 8.66 5.63 10.51 7.44 19.17 13.07

Kenya 196.96 127.92 238.90 169.11 435.86 297.03

Mali 20.22 13.13 24.52 17.36 44.74 30.49

Mauritania 5.95 3.86 7.22 5.11 13.17 8.97

Niger 15.45 10.03 18.74 13.26 34.18 23.29

Nigeria 413.91 268.81 502.04 355.38 915.94 624.19

Senegal 13.54 8.80 16.43 11.63 29.97 20.42

Somalia 33.02 21.44 40.05 28.35 73.07 49.79

South Sudan 5.76 3.74 6.99 4.95 12.75 8.69

Sudan 296.61 192.64 359.77 254.67 656.38 447.31

Uganda 108.23 70.29 131.28 92.93 239.51 163.22

Source: Authors‘ calculations using FAO (2023) 
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4. STUDIES ON THE 
IMPACTS OF DISASTERS 
ON MACROECONOMIC 
INDICATORS

Table A3-1 outlines the various and most relevant studies’ findings of the empirical analyses 
examining the nexus between disasters and macroeconomic indicators. This provides insights 
into both short- to medium- and long-term impacts across different countries and regions 
integrated into our study area.

http://www.sparc-knowledge.org
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TABLE A3-1: STUDIES ON THE IMPACTS OF DISASTERS ON MACROECONOMIC INDICATORS

Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

I. Short- to medium-term Impact (up to 5 years)

Shabnam 
(2014)

GDP per 
capita growth 
rate

Total number of 
people killed and 
people affected by 
floods

187 countries Not indicated 1960–
2010

OLS (Ordinary Least 
Square) FE (Fixed 
Effects)

The total number of people affected 
by flooding has a negative impact 
on the growth rate of GDP per 
capita, while the number of deaths 
has no substantial effect.

Fomby et al. 
(2013)

GDP per 
capita growth, 
agricultural 
and non-
agricultural 
per capita 
value-added 
growth

Number of affected 
and losses from 
drought, flood, 
earthquake and 
storm variables

84 countries. 
60 developing 
and 24 
developed 
(OECD) countries

Not indicated 1960–
2007

Panel: Vector Auto 
Regression (VAR) X

Floods have a positive impact, while 
droughts have negative effects, 
especially on agricultural growth.

Loayza et al. 
(2012)

GDP growth, 
sectoral 
growth

Number of deaths 
and people affected 
by drought, flood, 
earthquake and 
storm variables

94 countries. 
68 developing 
and 26 
developed 
(OECD) countries

 Not indicated 1961–
2005

Generalised Method 
of Moments (GMM) 
panel estimator

Hazards impact economic growth 
variably, with diverse disaster 
effects across hazard types and 
sectors, since hazards moderate 
in intensity may positively affect 
certain sectors, while severe 
ones generally do not. The latter 
particularly impact developing 
countries more significantly than 
developed ones across multiple 
sectors.
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

Schumacher 
et al. (2011)

GDP growth 
per capita

Number of deaths 
and economic 
losses related to 
cyclones, droughts, 
earthquakes, floods, 
landslides and 
volcanoes

181 developing 
countries

Not indicated 1980–
2004

Tobit estimator The relationship between losses 
and wealth crucially depends on the 
intensity of the hazard.

Noy (2009) GDP growth 
rate

Number of people 
killed, number of 
people affected and 
amount of direct 
damage due to 
natural hazards

109 developing 
and developed 
countries

Not indicated 1970–
2003

Dynamic GMM Natural hazards exhibit a 
statistically observable impact 
on the macroeconomy when 
measured by property damage, 
whereas alternative measures using 
population indicators show no 
statistically identifiable evidence of 
macroeconomic costs.

Toya and 
Skidmore 
(2007)

GDP growth Hazard-induced 
deaths and damages

151 OECD and 
developing 
countries

Not indicated 1960–
2003

OLS (FE) Per capita income is inversely 
correlated with both deaths and 
damages/GDP.

Raddatz 
(2007)

GDP growth External shocks, 
including natural 
hazards

40 lower-income 
countries

Burkina Faso, 
Cameroon, 
Chad, Ethiopia, 
Guinea, Kenya, 
Mali, Mauritania, 
Niger, Nigeria, 
Senegal, Uganda

1965–
1997

Panel: VAR External shocks such as natural 
hazards on average account for only 
a small fraction of the volatility of 
these countries' real GDP.

http://www.sparc-knowledge.org
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

Felbermayr 
et al. (2014)

GDP growth Number of people 
killed and affected, 
and property 
damaged by natural 
hazards 

108 countries Not indicated 1979–
2010 

OLS (FE) and GMM The GeoMet data reveal a 
substantial negative and robust 
average impact effect of disasters 
on growth.

Kahn (2005) Real GDP per 
capita

Number of deaths 
and people affected 
by natural hazards

73 countries Ethiopia, Kenya, 
Nigeria

1980–
2002

OLS and 
instrumental 
variables (IV)

Democracies and nations with 
higher-quality institutions suffer 
fewer disaster deaths than poor 
nations.

Cavallo et al. 
(2022)

Real GDP per 
capita growth

Natural hazards 
(geophysical; 
meteorological; 
hydrological and 
climatological)

203 developing 
and developed 
countries

Cameroon, Chad, 
Djibouti, Ethiopia, 
Gambia, Guinea, 
Senegal, Somalia 

1970–
2019

Average treatment 
effect

Disasters related to natural hazards 
have a negative impact on economic 
growth. The impact is larger for 
poorer countries, concluding that 
the impact of natural disasters on 
growth is an economic development 
issue.

Zhao et al. 
(2023)

GDP growth CO2, temperature, 
precipitation 
fluctuation

44 countries in 6 
climatic zones in 
Africa

Burkina Faso, 
Cameroon, 
Chad, Gambia, 
Kenya, Mali, 
Mauritania, 
Niger, Nigeria, 
Senegal, Uganda

2000–
2019

Panel VAR and OLS 
(FE)

Temperature fluctuation affects 
African countries' economic growth 
differently across six climate zones. 
While inverted U-shaped effects 
are observed in tropical rainforest 
and tropical dry zones, a U-shaped 
effect in warm temperate humid 
regions, a positive impact on coastal 
regions and no significant impact on 
inland countries were found.
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

López et al. 
(2016)

GDP growth Number of intense 
hydrometeorological 
hazards and carbon 
accumulation

184 countries Burkina Faso, 
Cameroon, 
Chad, Djibouti, 
Eritrea, Ethiopia, 
Gambia, Guinea, 
Kenya, Mali, 
Mauritania, 
Niger, Nigeria, 
Senegal, 
Somalia, South 
Sudan, Sudan

1970–
2013

Negative Binomial 
Models (FE)

Disasters related to intense hydro 
meteorological hazards had a 
negative impact on GDP growth.

Abidoye et al. 
(2015)

GDP growth 
rate

Temperature 
variability

34 African 
countries

Burkina Faso, 
Cameroon, 
Chad, Kenya, 
Niger, Nigeria, 
Senegal, Sudan, 
Uganda

1961– 
2009

Linear hierarchical 
regression

A negative impact of climate change 
on economic growth is found. A 1°C 
increase in temperature reduces 
GDP growth by 0.67 percentage 
points.

Hochrainer-
Stigler (2015)

GDP growth Number of people 
killed and affected, 
and financial losses 
from disasters

1,473 large 
disaster events 
across countries 

- 1970–
2006

Multivariate linear 
regression models, 
Time Series 
Regression (ARIMA)

The analysis supports the 
hypothesis that the impacts of 
natural hazard-related disasters on 
economic growth probably depend 
on the socioeconomic situation 
prior to the event.
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

Panwar et al. 
(2019)

GDP per 
capita, 
agricultural 
value added 
per capita, 
non-
agricultural 
value added 
per capita

Intensity of floods, 
droughts, storms and 
earthquakes 

102 countries 
(29 developed 
and 
73 developing)

Burkina Faso, 
Cameroon, 
Chad, Ethiopia,   
Guinea, Kenya, 
Mali, Mauritania, 
Nigeria, Senegal, 
Sudan, Uganda

1981–
2015

The system GMM 
approach

Natural hazards have diverse 
economic impacts across economic 
sectors depending on disaster 
types and their intensity, and the 
impacts are statistically stronger in 
developing countries.

II. Long-term impact (up to 10 years and beyond)

Owusu-
Sekyere et al. 
(2021)

Annual 
percentage of 
GDP growth

Exposure to a hazard 
(drought, cyclone, 
flood), susceptibility, 
coping capacity, and 
adaptive capacity of 
countries.

5 Southern 
Africa 
Development 
Community 
(SADC) countries

Not included 2005–
2019

Dynamic panel data 
techniques that 
control for country- 
and time-specific 
characteristics, 
heteroscedasticity, 
serial correlation, 
and cross-sectional 
dependence (CSD) 
of the error term

Extreme events have a negative 
contemporaneous impact on 
economic growth in the studied 
countries.

Diop et al. 
(2024)

GDP Intensity of natural 
hazards

25 African 
countries

Burkina Faso, 
Cameroon, 
Djibouti, Eritrea, 
Kenya, Niger, 
Nigeria, Senegal, 
Uganda

1980–
2020

Generalised 
synthetic control 
method (GSC)

Severe extreme events induce a 
significant and continuous reduction 
of GDP many years after the event, 
depending on the level of capital and 
the aspects of governance quality.
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

Adjei-Mantey 
et al. (2019)

GDP per 
capita, 
agriculture 
growth, 
industrial 
growth, 
service 
growth

Number of deaths 
and people affected 
by natural hazard-
related disasters

50 sub-Saharan 
African countries

Not indicated 1980–
2015

OLS panel A significant negative effect 
of weather/climate hazards is 
observed in economic growth, 
growth in agricultural value added 
and growth in industrial value 
added. Results also show that 
disaster effects appear and persist 
in the post-year periods.

Iqbal Khan et 
al. (2022)

GDP per 
capita

Number of people 
affected by natural 
hazard-related 
disaster event

98 countries Cameroon, 
Ethiopia, 
Gambia, 
Guinea, Kenya, 
Mauritania, 
Nigeria, Sudan, 
Tanzania, 
Uganda

1995–
2019

GMM Natural hazards have a negative 
impact on income. In addition, the 
economic cost of natural hazards 
is relatively high in low-income 
countries and mild in high- and 
upper-middle-income countries.

Cavallo et al. 
(2013)

GDP per 
capita

Large-scale natural 
hazard-related 
disaster

196 countries Not indicated 1970–

2008

Cross-country 
comparative 
case study with a 
synthetic control 
methodology

Disasters related to natural hazards 
have no significant effect on 
subsequent economic growth 
unless they spark a radical political 
revolution.
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

Shimada 
(2021)

GDP per 
capita and 
agricultural 
production

Number of persons 
affected and deaths 
related to flood, 
drought and storm

90 African 
countries

Not indicated 1961–
2011

Panel data with FE, 
random effects (RE) 
and pooling

Natural hazards have adverse 
effects on Africa's economic 
growth, agriculture and poverty 
levels, contributing to armed 
conflicts, with droughts emerging 
as the primary driver of negative 
impacts, particularly impacting 
staple crops such as maize and 
coffee, while exacerbating urban 
poverty and conflict.

Skidmore 
and Toya 
(2002)

Per capita 
GDP growth

Total hazard events 89 countries Cameroon, 
Kenya, Mali, 
Niger, Senegal, 
Uganda

1960–
1990

OLS (FE) Geophysical hazards have no 
effects, while climatic hazards may 
have positive effects on economic 
growth in the long term.

Noy and 
Nualsri 
(2007)

Per capita 
GDP growth

Number of people 
killed and property 
damaged by hazards

107 OECD and 
non-OECD 
countries

Cameroon, 
Kenya, Mali, 
Niger, Senegal, 
Uganda

1970–
2003

GMM The number of people killed seems 
to be decreasing long-term GDP 
growth, while damage has no 
impact.

Raddatz 
(2009)

GDP growth Event dummies 
using criteria set by 
the IMF (2003)

112 countries Not indicated 1975–
2006

Panel VAR and 
Auto-Regressive 
Distributed Lag 
(ARDL)

The results indicate that a climate-
related disaster reduces real GDP 
per capita. Among climatic hazards, 
droughts have the largest average 
impact, with cumulative losses of 
1% of GDP per capita.
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Study 
reference

Dependent 
variable(s)

Event type Sample (size) SGHA countries 
included

Data 
period

Estimation 
methodology

Key findings

Jaramillo 
(2009)

GDP growth Number of people 
killed and affected, 
and property 
damaged by hazards

113 countries Burkina Faso, 
Cameroon, 
Chad, Guinea, 
Kenya, Mali, 
Niger, Nigeria, 
Senegal, Uganda

1960–
1996

OLS Natural hazards have negative 
effects on economic growth, and 
this impact is permanent for some 
countries in the long term.

Klomp (2015) Sovereign 
default risk 
as a proxy 
of debt 
sustainability

Large-scale natural 
hazards

40 market 
emerging 
countries

Not indicated 1992–
2008

GMM for dynamic 
panel approach

Natural hazards significantly 
increase the sovereign default 
premium paid by bondholders.

Berlemann et 
al. (2016)

GDP growth Exogenous drought 
indicator derived 
from rainfall data

153 countries Not indicated 1960–
2002

OLS (FE) A significantly negative long-term 
growth effect of droughts in both 
highly and less developed countries.

Mukherjee et 
al. (2018)

GDP per 
capita

Total number of 
fatalities, number of 
affected, injured and 
homeless people

189 countries/
regions

Not indicated 1970–
2010

Random parameter 
modelling approach 
(FE)

Flood is the most devastating 
hazard to affect country/region-level 
economic growth.

Note on estimation methodology abbreviations: OLS: Ordinary Least Square, FE: Fixed Effects, VAR: Vector Auto Regression, GMM: Generalised Method of Moments

Source: Updated from Panwar (2020)
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